Specimen Paper Answers - Paper 1

Cambridge International AS \& A Level Mathematics 9709

For examination from 2020

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for
improvement and to identify new development needs.
We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018 (updated April 2021)
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Contents

Introduction 4
Question 1 7
Question 2 8
Question 3 9
Question 4 10
Question 5 11
Question 6 12
Question 7 13
Question 8 14
Question 9 16
Question 10 18
Question 11 20
Question 12 22

Introduction

The main aim of this booklet is to exemplify standards for those teaching Cambridge International AS \& A Level Mathematics 9709, and to show examples of model answers to the 2020 Specimen Paper 1. Paper 1 assesses the syllabus content for Pure Mathematics 1. We have provided answers for each question in the specimen paper, along with examiner comments explaining where and why marks were awarded. Candidates need to demonstrate the appropriate techniques, as well as applying their knowledge when solving problems.

Individual examination questions may involve ideas and methods from more than one section of the syllabus content for that component. The main focus of examination questions will be the AS \& A Level Mathematics subject content. However, candidates may need to make use of prior knowledge and mathematical techniques from previous study, as listed in the introduction to section 3 of the syllabus.

There are 10 to 12 structured questions in Paper 1; candidates must answer all questions. Questions are of varied lengths and often contain several parts, labelled (a), (b), (c), which may have sub-parts (i), (ii), (iii), as needed. Some questions might require candidates to sketch graphs or diagrams, or draw accurate graphs.

Candidates are expected to answer directly on the question paper. All working should be shown neatly and clearly in the spaces provided for each question. New questions often start on a fresh page, so more answer space may be provided than is needed. If additional space is required, candidates should use the lined page at the end of the question paper, where the question number or numbers must be clearly shown.

The mark schemes for the Specimen Papers are available to download from the School Support Hub at www.cambridgeinternational.org/support

2020 Specimen Mark Scheme 1

Past exam resources and other teacher support materials are available on the School Support Hub (www.cambridgeinternational.org/support).

Assessment overview

There are three routes for Cambridge International AS \& A Level Mathematics. Candidates may combine components as shown below.

Route 1 AS Level only (Candidates take the AS components in the same series)	Paper 1 Pure Mathematics 1	Paper 2 Pure Mathematics 2	Paper 3 Pure Mathematics 3	Paper 4 Mechanics	Paper 5 Probability \& Statistics 1	Paper 6 Probability \& Statistics 2
Either	\checkmark		Not available for AS Level		\checkmark	Not available for AS Level
Or	\checkmark			\checkmark		
Or Note this option in Route 1 cannot count towards A Level	\checkmark	\checkmark				

Route 2 A Level (staged over two years)	Paper 1 Pure Mathematics 1	Paper 2 Pure Mathematics 2	Paper 3 Pure Mathematics 3	Paper 4 Mechanics	Paper 5 Probability \& Statistics 1	Paper 6 Probability \& Statistics 2
Either Year 1 AS Level	\checkmark	Not available for A Level		\checkmark		
Year 2 Complete the A Level	\checkmark		\checkmark		\checkmark	
Or Year 1 AS Level					\checkmark	
Year 2 Complete the A Level			\checkmark			\checkmark
Or Year 1 AS Level	\checkmark				\checkmark	
Year 2 Complete the A Level			\checkmark	\checkmark		

Route 3 A Level (Candidates take the A Level components in the same series)	Paper 1 Pure Mathematics 1	Paper 2 Pure Mathematics 2	Paper 3 Pure Mathematics 3	Paper 4 Mechanics	Paper 5 Probability \& Statistics 1	Paper 6 Probability \& Statistics 2
Either	\checkmark	Not available	\checkmark	\checkmark	\checkmark	
Or	\checkmark	A Level	\checkmark		\checkmark	\checkmark

Paper 1 - Pure Mathematics 1

- Written examination, 1 hour 50 minutes, 75 marks
- 10 to 12 structured questions based on the Pure Mathematics 1 subject content
- Candidates answer all questions
- Externally assessed by Cambridge International
- 60% of the AS Level
- 30% of the A Level

This is compulsory for AS Level and A Level.

Assessment objectives

The assessment objectives (AOs) are the same for all papers:

A01 Knowledge and understanding

- Show understanding of relevant mathematical concepts, terminology and notation
- Recall accurately and use appropriate mathematical manipulative techniques

AO2 Application and communication

- Recognise the appropriate mathematical procedure for a given situation
- Apply appropriate combinations of mathematical skills and techniques in solving problems
- Present relevant mathematical work, and communicate corresponding conclusions, in a clear and logical way

Weightings for assessment objectives

The approximate weightings $(\pm 5 \%)$ allocated to each of the AOs are summarised below.
Assessment objectives as an approximate percentage of each component
Assessment objective Weighting in components \%

	Paper 1	Paper 2	Paper 3	Paper 4	Paper 5	Paper 6
AO1 Knowledge and understanding	55	55	45	55	55	55
AO2 Application and communication	45	45	55	45	45	45

Assessment objectives as an approximate percentage of each qualification

Assessment objective	Weighting in AS Level \%	Weighting in A Level \%
AO1 Knowledge and understanding	55	52
AO2 Application and communication	45	48

Question 1

The allocation of marks is indicated using red circles, e.g.

shows where a B1 mark has been awarded.

1 The following points

$$
A(0,1), B(1,6), C(1.5,7.75), D(1.9,8.79) \text { and } E(2,9)
$$

lie on the curve $y=\mathrm{f}(x)$. The table below shows the gradients of the chords $A E$ and $B E$.

Chord	$A E$	$B E$	$C E$	$D E$
Gradient of chord	4	3	2.5	2.1

(a) Complete the table to show the gradients of $C E$ and $D E$.

$$
\begin{aligned}
& \text { For CE gradient }=\frac{9-7.75}{2-1.5}=\frac{1.25}{0.5}=2.5 \\
& \text { For DE gradient }=\frac{9-8.79}{2-1.9}=\frac{0.21}{0.1}=2.1
\end{aligned}
$$

(b) State what the values in the table indicate about the value of $\mathrm{f}^{\prime}(2)$.
$f^{\prime}(2)$ gives the value of the gradient of the curve at $x=2$
The values in the table indicate that the gradients of the chords tends towards 2.

Examiner comment

Working is not required in this case for the marks to be awarded.

Examiner comment

The mark is awarded for stating $f^{\prime}(2)=2$; again, working is not required to be shown for full marks to be awarded in this question.

Question 2

$2 \quad$ Functions f and g are defined by

$$
\begin{aligned}
& \mathrm{f}: x \mapsto 3 x+2, x \in \mathbb{R} \\
& \mathrm{~g}: x \mapsto 4 x-12, x \in \mathbb{R}
\end{aligned}
$$

Solve the equation $\mathrm{f}^{-1}(x)=\operatorname{gf}(x)$.

Examiner comment

$$
\text { Let } f(x)=y: \quad \begin{aligned}
& y=3 x+2 \\
& y-2=3 x \\
& x=\frac{y-2}{3} \\
& \therefore f^{-1}(x)=\frac{x-2}{3} \\
& g f(x)=4(3 x+2)-12 \quad \text { B1 } \\
&=12 x-4 \\
& \text { When } \quad \begin{aligned}
x-2 & =12 x-4 \\
x-2 & =36 x-12 \\
10 & =35 x \\
x & =\frac{10}{35}=\frac{2}{7}
\end{aligned}
\end{aligned}
$$

Question 3

3 An arithmetic progression has first term 7. The nth term is 84 and the ($3 n$)th term is 245 .
Find the value of n.

```
un}=a+(n-1)d and a=7
    84=7+(n-1)d and 245=7+(3n-1)d B1
So 77= (n-1)d and 238=(3n-1)d B1
        77
    231n-77=238n-238
        161=7n
        n=23
```


Examiner comment

The first B mark is for either of the expressions for the nth or (3n)th terms being correct. The method mark would be awarded for any correct method to eliminate d. If n is eliminated first, the mark is only awarded when d is used to find n.

Question 4

4 A curve has equation $y=\mathrm{f}(x)$. It is given that $\mathrm{f}^{\prime}(x) \frac{1}{\sqrt{x+6}}+\frac{6}{x^{2}}$ and that $\mathrm{f}(3)=1$.
Find $\mathrm{f}(x)$.

Examiner comment

The first method mark is awarded for a clear attempt at integration - usually an increase in the power of each term is sufficient.

Question 5

5 (a) The curve $y=x^{2}+3 x+4$ is translated by $\binom{2}{0}$.

Find and simplify the equation of the translated curve

$$
\begin{aligned}
& y=(x-2)^{2}+3(x-2)+4 \\
& y=x^{2}-4 x+4+3 x-6+4 \\
& y=x^{2}-x+2
\end{aligned}
$$

(b) The graph of $y=\mathrm{f}(x)$ is transformed to the graph of $y=3 \mathrm{f}(-x)$.

Describe fully the two single transformations which have been combined to give the resulting transformation.

```
A reflection in the y axis. B1
A stretch in the \(y\) direction, with a scale factor of 3 . B1 B1
```


Examiner comment

No specific comments here.

Examiner comment

No specific comments here.

Question 6

6 (a) Find the coefficients of x^{2} and x^{3} in the expansion of $(2-x)^{6}$.

$$
\begin{aligned}
& (2-x)^{6}=2^{6}+\binom{6}{1} 2^{5}(-x)+\binom{6}{2} 2^{4}(-x)^{2}+\binom{6}{3} 2^{3}(-x)^{3} \\
& \text { Coefficient of } x^{2}=\binom{6}{2} 2^{4}=240 \\
& \text { Coefficient of } x^{3}=\binom{6}{3} 2^{3}(-1)^{3}=-160
\end{aligned}
$$

(b) Hence find the coefficient of x^{3} in the expansion of $(3 x+1)(2-x)^{6}$

$$
\begin{gathered}
(3 x+1)\left(\ldots 240 x^{2}-160 x^{3} \ldots\right) \\
\text { Coefficient of } x^{3}: 3 \times 240+1 \times(-160) \\
=560
\end{gathered}
$$

Examiner comment

The candidate should be aware of the structure of this expansion, although its inclusion is not required for full marks.

For the coefficient of x^{3}, one of the B marks can be awarded if the candidate has got the wrong sign (i.e. + instead of -160)

Examiner comment

The first line of working shows that the candidate knows where the solution comes from, but it is not required for full marks to be awarded. The method mark is awarded for $3 \times$ their $240+1 \times$ their (-160) and the A mark for a correct follow through.

Question 7

7 (a) Show that the equation $1+\sin x \tan x=5 \cos x$ can be expressed as

$$
6 \cos ^{2} x-\cos x-1=0
$$

```
1+\operatorname{sin}x\operatorname{tan}x=5\operatorname{cos}x
1+\operatorname{sin}x\frac{\operatorname{sin}x}{\operatorname{cos}x}=5\operatorname{cos}x\quadM1
cos}x+\mp@subsup{\operatorname{sin}}{}{2}x=5\mp@subsup{\operatorname{cos}}{}{2}
cos}x+(1-\mp@subsup{\operatorname{cos}}{}{2}x)=5\mp@subsup{\operatorname{cos}}{}{2}
0=6 然2}x-\operatorname{cos}x-
or 6 \mp@subsup{\operatorname{cos}}{}{2}x-\operatorname{cos}x-1=0
```

(b) Hence solve the equation $1+\sin x \tan x=5 \cos x$ for $0^{\circ} \leqslant x \leqslant 180^{\circ}$.

```
6 <os}
(3\operatorname{cos}x+1)(2\operatorname{cos}x-1)=0
\thereforecosx=-\frac{1}{3}\mathrm{ or }\frac{1}{2}
x=60}\mathrm{ or 109.5
```


Examiner comment

Method marks are awarded for using the correct replacement for $\tan x$, and for using the correct identity $\left(\sin ^{2} x=1-\cos ^{2} x\right)$ in an appropriate place.

A correct method of solving a quadratic equation must be seen - without the method the two A1 marks cannot be awarded.

Question 8

8 A curve has equation $y=\frac{12}{3-2 x}$.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

$$
\begin{aligned}
y & =12(3-2 x)^{-1} \\
\frac{d y}{d x} & =-12(3-2 x)^{-2} \\
& =24(3-2 x)^{-2}
\end{aligned}
$$

Examiner comment

Working is not required in this question for full marks to be awarded.

A point moves along this curve. As the point passes through A, the x-coordinate is increasing at a rate of 0.15 units per second and the y-coordinate is increasing at a rate of 0.4 units per second.
(b) Find the possible x-coordinates of A.

$$
\begin{aligned}
& \begin{aligned}
\frac{d x}{d t} & =0.15, \frac{d y}{d t}
\end{aligned}=0.4 . \\
& \begin{aligned}
\therefore \frac{d y}{d x} & =\frac{d y}{d t} \div \frac{d x}{d t} \\
& =0.4 \div 0.15 \\
& =\frac{8}{3}
\end{aligned} \\
& \begin{aligned}
\therefore 24(3-2 x)^{-2} & =\frac{8}{3} \\
72 & =8(3-2 x)^{2} \\
9 & =(3-2 x)^{2} \\
\pm 3 & =3-2 x
\end{aligned} \\
& \text { Either } x=0 \text { A1 or } 3-2 x=-3
\end{aligned}
$$

$$
x=3
$$

The first two lines show the expected thought process but full marks can be awarded without it being seen.

The first method mark is awarded when the candidate's algebraic expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is equated to their numeric value obtained from the use of the chain rule, and a method for solving a quadratic equation is seen.

The second method mark is awarded for an attempt to equate their solution to part (a) to their numeric value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ found above, provided this leads to them solving a quadratic equation. There is no follow through marks awarded here.

Question 9

9

The diagram shows a circle with centre A and radius r. Diameters $C A D$ and $B A E$ are perpendicular to each other. A larger circle has centre B and passes through C and D.
(a) Show that the radius of the larger circle is $r \sqrt{2}$.

```
BC is the radius of the larger circle.
    BC 2}=A\mp@subsup{B}{}{2}+A\mp@subsup{C}{}{2
    BC 2}=\mp@subsup{r}{}{2}+\mp@subsup{r}{}{2
        =2r
    BC=r\sqrt{}{2}
    B1
```


Examiner comment

A valid method must be seen before the mark can be awarded - it does not have to be the method shown here.
(b) Find the area of the shaded region in terms of r.

Shaded area $=\frac{1}{2}$ Area of small circle - Area of the minor segment of the large circle on the chord $A C D$.

$$
\hat{C B D}=\frac{\pi}{2}
$$

\therefore Segment area $=$ Sector area - triangle area

$$
\begin{aligned}
& =\frac{1}{2}(r \sqrt{2})^{2} \frac{\pi}{2}-\frac{1}{2}(r \sqrt{2})^{2} \sin \frac{\pi}{2} \text { M1 } \\
& =\frac{1}{2} r^{2} \pi-r^{2}
\end{aligned}
$$

Shaded area $=\frac{1}{2} \pi r^{2} B 1-\left(\frac{1}{2} r^{2} \pi-r^{2}\right)$

$$
=r^{2} \quad A 1
$$

Examiner comment
No specific comments here.

Question 10

10 The circle $x^{2}+y^{2}+4 x-2 y-20=0$ has centre C and passes through points A and B.
(a) State the coordinates of C.

From the given equation $(x+2)^{2}+(y-1)^{2}=r^{2}$
$\therefore C$ is $(-2,1)$

It is given that the midpoint, D, of $A B$ has coordinates $\left(1 \frac{1}{2}, 1 \frac{1}{2}\right)$.
(b) Find the equation of $A B$, giving your answer in the form $y=m x+c$.

$$
\begin{aligned}
& \text { Gradient } C D=\frac{1-1 \frac{1}{2}}{-2-1 \frac{1}{2}}=\frac{-\frac{1}{2}}{-3 \frac{1}{2}}=\frac{1}{7} \quad \therefore \text { gradient } A B=-7 \\
& \text { Equation of } A B: y-1 \frac{1}{2}=-7\left(x-1 \frac{1}{2}\right) \quad \text { M1 } \\
& \text { Giving } \quad y=-7 x+12 \quad \text { A1 }
\end{aligned}
$$

(c) Find, by calculation, the x-coordinates of A and B.

$$
\begin{align*}
& \text { Using the equations of the line and the circle: } \\
& \qquad \begin{aligned}
x^{2}+(-7 x+12)^{2}+4 x-2(-7 x+12)-20 & =0 \\
x^{2}+49 x^{2}-168 x+144+4 x+14 x-24-20 & =0 \\
50 x^{2}-150 x+100 & =0 \\
x^{2}-3 x+2 & =0 \\
(x-1)(x-2) & =0 \\
\therefore x & =1 \text { or } 2
\end{aligned} \tag{M1}
\end{align*}
$$

Examiner comment

There must be clear evidence of a method of solution of a quadratic equation for the final A 1 to be awarded.

Question 11

11 The function f is defined, for $x \in \mathbb{R}$, by $\mathrm{f}: x \mapsto x^{2}+a x+b$, where a and b are constants.
(a) It is given that $a=6$ and $b=-8$.

Find the range of f .

$$
\begin{aligned}
f(x) & =x^{2}+6 x-8 \\
& =(x+3)^{2}-17 \\
\therefore f(x) & \geqslant-17 \quad B 1
\end{aligned}
$$

Examiner comment

The final B mark is a follow through from the candidate's value of the y-coordinate (either expressed explicitly, or seen in the completed square form).

It is given instead that $a=5$ and that the roots of the equation $\mathrm{f}(x)=0$ are k and $-2 k$, where k is a constant.
(b) Find the values of b and k.

Examiner comment

No specific comment here.
(c) Show that if the equation $\mathrm{f}(x+a)=a$ has no real roots then $a^{2}<4(b-a)$.

$$
\begin{aligned}
f(x+a) & =(x+a)^{2}+a(x+a)+b \\
& =x^{2}+3 a x+2 a^{2}+b
\end{aligned}
$$

When $f(x+a)=a$:

$$
x^{2}+3 a x+2 a^{2}+b-a=0
$$

For no real roots " $b^{2}-4 a c$ " <0

$$
\begin{gathered}
\therefore 9 a^{2}-4 \times 1 \times\left(2 a^{2}+b-a\right)<0 \text { DM1 } \\
9 a^{2}-8 a^{2}-4 b+4 a<0 \\
a^{2}<4 b-4 a \\
a^{2}<4(b-a)
\end{gathered}
$$

Examiner comment

No specific comment here.

Question 12

12

The diagram shows the curve with equation $y=x(x-2)^{2}$. The minimum point on the curve has coordinates $(a, 0)$ and the x-coordinate of the maximum point is b, where a and b are constants.
(a) State the value of a.

The repeated factor $(x-2)$ in the cubic equation means that the curve
The mark is awarded for stating $a=2$.
(b) Calculate the value of b.

$$
\begin{aligned}
& y=x(x-2)^{2}=x\left(x^{2}-4 x+4\right) \\
&=x^{3}-4 x^{2}+4 x \\
& \frac{d y}{d x}=3 x^{2}-8 x+4 \\
&
\end{aligned}
$$

At turning points $\frac{d y}{d x}=0$

$$
\begin{aligned}
& 0=3 x^{2}-8 x+4 \\
& 0=(x-2)(3 x-2)
\end{aligned}
$$

$(x-2)=0$ gives a
Therefore 6 comes from $(3 x-2)=0$

$$
\begin{aligned}
3 x & =2 \\
x & =\frac{2}{3} \quad B 1
\end{aligned}
$$

Examiner comment

The mark is awarded for stating $x=\frac{2}{3}$. This mark is dependent on clear evidence of a method of solution of a quadratic equation. The two B marks for the differentiation are follow-through marks from the candidate's expansion of $y=x(x-2)^{2}$.
(c) Find the area of the shaded region.

$$
\begin{aligned}
A & =\int_{0}^{2} x^{3}-4 x^{2}+4 x d x \\
& =\left[\frac{x^{4}}{4}-\frac{4 x^{3}}{3}+2 x^{2}\right]_{0}^{2} \\
& =\left(4-\frac{32}{3}+8\right)-0 \\
& =\frac{4}{3}
\end{aligned}
$$

(d) The gradient, $\frac{\mathrm{d} y}{\mathrm{~d} x}$, of the curve has a minimum value m. Calculate the value of m.

The minimum value of $\frac{d y}{d x}$ occurs when $\frac{d^{2} y}{d x^{2}}=0$.
$\frac{d^{2} y}{d x^{2}}=6 x-8$
$0=6 x-8$
$x=\frac{4}{3}$
When $x=\frac{4}{3}, \frac{d y}{d x}=3\left(\frac{4}{3}\right)^{2}-8\left(\frac{4}{3}\right)+4$
$=-\frac{4}{3} \quad A 1$

Examiner comment

The method mark here is not implied by a correct answer; this use of limits must be seen.

Examiner comment

This is the thought process expected of the candidate.

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org
Copyright © UCLES September 2018 (updated April 2021)

